Calculate (co)limits as (co)equalisers (two examples)

There is a general formulation for constructing limits as equalisers: see Theorem 1 in Section V.2, Maclane. For the dual version, see Theorem A.2.1 in Appendix A written by me.

The constructions look like these (see the links above for details):


But in practice, these diagrams may not be helpful to see what the equalisers should be. Now I give proofs for the (co)equalisers in two examples: the connected component of a simplicial set and the sheaf condition.

The connected components [Background]

For definitions and other backgrounds, see Subsection 00G5. For the record, see [P12, DLOR07] for the cosimplicial identities and Tag 000G for simplicial identities. (These identities are used in my proofs.)

Two examples of (co)limits as (co)equalisers

Pdf here: Two examples of (co)limits as (co)equalisers